

NCEP Ocean Modeling

Current status and future directions

Hendrik L. Tolman Chief, Marine Modeling and Analysis Branch NOAA / NWS / NCEP / EMC

Hendrik.Tolman@NOAA.gov

Weather time scale ocean modeling only, Dave Behringer will discuss CFS / MOM4.

History:

- Early 1990's: POM East Coast model:
 - > Requirement for SOLAS from OPC.
 - > Issues with Gulf Stream Separation.
- Late 1990's short-lived focus on in-house model development (CubOc).
- After that: HYCOM Consortium
 - > Coalition of the willing with similar mission/requirements.
 - > Major Navy input (NRL, ONR).
 - > Several academic partners.
 - > 2005 implementation of RTOFS-Atlantic (HYCOM).

History cont'ed:

- 2004/5 NOAA SAB board: create NOAA Ocean Backbone Capability (weather time scales) with:
 - > Global and basin responsibility for NCEP.
 - Coastal and regional responsibilities for NOS.
 - Moving operational models to ops. computers.
 - Coastal and regional private-public partnership with IOOS Regional Associations.
- January 2008 workshop at NCEP to align NCEP plans better with SAB.
 - Focus on RTOFS-Global first (NRL HYCOM)
 - > Possible only in close collaboration with NRL.

Five major efforts:

- Eddy resolving ocean modeling.
- Eddy resolving ocean initialization.Operational 2005Operational 10/25/2011

RTOFS-Atlantic RTOFS-Global

- Coupled modeling for hurricanes.
 Live testing nested RTOFS coupled to HWRF
- Coupled modeling for weather CFS / NEMS.
 Under development RTOFS-NEMS
- Episodic tracers (with shelf life)
 Operational 07/24/2012

RTOFS-ET-Pac

- All RTOFS models presently based on HYCOM
 - > RTOFS represent line of products.
 - > HYCOM is underlying ocean model.

RTOFS-Atlantic

- First full HYCOM model to become operational at NCEP.
- Replacing previous POM model for East Coast (excluding Gulf of Mexico).
- Model with tides, requirement from OPC.
- Issues with model:
 - ➤ Left in limbo to get RTOFS-Global in fast.
 - > To be nested in RTOFS-Global, boundaries have been headaches.
 - > Next decision point: do we keep this model around?
 - → Tides.
 - → 4-6 km coastal resolution for US.

RTOFS-Atlantic

- Push to global model (vs. regional models):
 - Satisfy requirements from NOAA SAB.
 - > Provide boundary data for regional models.
- Adopting existing 1/12° model from NRL (NOPP).
 - > GFS forcing (including diurnal cycle).
- Timeline:
 - Operational 10/25/2011 with NRL/NAVOCEANO (NCODA) initialization (daily feed from NAVO).
 - > FY2014: full initialization at NCEP.

paradigm shift for NWS

- NOMADS as main distribution points (OpenDAP, NetCDF).
- RTOFS-Atlantic as testbed for global.
- Linking to NOS Coastal Ocean Modeling Framework.
- No tides yet (unlike RTOFS-Atlantic)

Grid and layer 1 temperature snapshot:

Conversion to GFS forcing "clean"

Focus on producing GODAE metrics products Examples follow:

- Class 1: Differences with SSH fields from independent analyses.
- Class 2: Drifts from climatology at selected WOCE sections.
- Class 3: Location of Gulf Stream.
- Class 3: Transports at more than 100 sections.
- Class 4: Statistics on location of Gulf Stream; Daily comparison with independent SST, SSH data.
- Class 4: Comparisons of forecasts/analysis with ARGO profiles.

14 Mar 2011

NCEP/EMC/MMAB RTOFS Global

Coupled hurricane modeling with regional ocean components

Simulations and observations for Gustav (2008)

Lessons learned:

- Coupling to different atmospheric models requires attention to models and or model-dependent flux bias correction.
- Comparison of radiation fluxes below

GFS – blue HWRF – red

Intensity Forecast for 6 TCs (186 cases): Gert07L, Irene09L, Katia12L, Maria14L, Ophelia16L, and Philippe17L HY11=HyHWRF2011; HWRF=operational HWRF

- HyHWRF average intensity error and bias are the best among participant models, except degradation at 12h in average error and negative bias at 24h.
- HyHWRF standard deviation is consistently the smallest, except 12 and 24 h.

RTOFS-NEMS

First step to coupling: manage drifts by flux correction:

- First climatological forcing, then full forcing (CFS ≈ GFS).
- vs. Pathfinder (bias), climatological years 5-6

1st climatological simulation

2nd climatological simulation, with flux correction

RTOFS-NEMS

SST mean anomalies with respect to Pathfinder

RTOFS-NEMS

Hovmuller diagram, Pacific equatorial SSH anomaly, from monthly means

RTOFS-ET-Pac

EMC became US government lead on ocean plume modeling for Fukushima Dai'ichi ocean contamination.

- Collaboration in large Interagency work group.
- Leveraging modeling from Navy, DTRA, NOS.
 - > NCEP Navy model data distribution point.
- CONOPS to rapidly generate actionable information for decision makers.
 - Product 1: Surface particle tracing to identify potentially contaminated areas.
 (April 6, 180 d)
 - Product 2: Contamination estimates using particle tracing + HYSPLIT atm. Deposits. (April 20, 180 d)
 - Product 3: Full dispersion model as passive decaying tracers, using direct release (NOS) and atm. deposit (NCEP)
 (RTOFS-ET-Pac, operational)

Plume density animation for first 54 days after initial release.

Plume density (particles/cell) tracked on 0.08° model grid, seeded every 0.125°, (smoothed)

Date: 11 Mar 2011 00Z

Range rings spacing 100 km centered on reactor site

Represents possible distribution not concentration.

Example product #2

¹³⁷Cs April 1, 2011, 00 UTC

HYSPLIT-NRC

HYSPLIT-DOE

Plume activity for Cs-137 (Bq/l) tracked on 0.08° model grid, seeded every 0.25°, (smoothed)
Initialized with HYSPLIT-NRC atmospheric deposition (Bq/m²) scaled with HYCOM mixed layer depth
Date: 01 Apr 2011 00Z HYSPLIT-NRC data available for 13-27 March
Range rings spacing 500 km centered on reactor site

Elapsed Time: 19.00 days Number of particles: 11112

Max activity all time (Bq/l): 1.45·10⁰ Max activity now (Bq/l): 1.45·10⁰

HYSPLIT-NRC and DOE differ by 2-3 orders of magnitude. HYSPLIT-NRC much too low, HYSPLIT-DOE much too high at JAMSTEC line.

	MCL (Bq/I)	1 mrem dose (Bq/l)
¹³⁷ Cs	7.4	33

	MCL (Bq/I)	1 mrem dose (Bq/l)
¹³⁷ Cs	7.4	33

RTOFS-ET-Pac

¹³⁷Cs surface concentration

(scale max: 0.05 Bq/I or 50 Bq/m³)

On April 25, 2011 with wet deposition from HYSPLIT data only.

Max: 7.207 Bq/l or 7207 Bq/m³

On April 27, 2011 with added direct discharge from ROMS (NOS-CSDL). Max. 10.195 Bq/l or 10,195 Bq/m³

MCL (Bq/I) 1 mrem dose (Bq/I)

137Cs 7.4 33

RTOFS-ET-Pac

137Cs surface concentration (scale max: 0.05 Bq/l or 50 Bq/m³)

On May 30,2011 Max: 4,204 Bq/m³ On Aug 28,2011 Max: 112 Bq/m³ On Dec 31,2011 Max: 31 Bq/m³

The surface concentrations are diluted as they propagate eastward.

Note MCL (drinking water) 7,400 Bq/m³

Existing background level approximately 3-5 Bq/m³ (1990)

RTOFS-ET-Pac

http://polar.ncep.noaa.gov/global/tracers

(scale max: 0.05 Bq/l or 50 Bq/m³)

Simulated results after atmospheric (HYSPLIT) and coastal (ROMS) sources were combined (April 27, 2011 ~ December 31, 2011)

Future / needs

- Atlantic:
 - > What is future of model?
- Global:
 - > Build capacity: focus on DA with Navy.
- HWRF:
 - > Get implemented, architecture of coupling.
- NEMS:
 - > Development in ESMF / NEMS environment.
 - → Weather coupling, possible CFS-v3 (MME).
- ET:
 - > Develop stand-by capabilities for emergency response.
 - CONOPS focused, ecosystems modeling link.
- General: coupling wind waves and ice.

